
NearZero™ NZ1 

Brushless Motor Controller for Robotics 
www.skysedge.us 

 
 

Quickstart 
1. Connect motor(s) 

● Connect the motor’s main power wires using the motor output screw terminals for 
channel 1, 2, or both. Unconnected channels are ignored after power up. 

● Wire order doesn’t matter, but if the motor spins the wrong way you can reverse any 
two of the three leads. 

2. Connect control cable(s) 
● For I2C control, use the included cable or your own 4-pin header connector. Get up and 

running with the Python examples (Section 6). 
● For PWM control use a standard servo cable for channel 1, 2, or both.  

3. Set jumper for desired command input type 
● Position the mode-select jumper for either PWM or I2C input, or for configuration (via 

USB). For control from a single-board computer (e.g. Raspberry Pi) use I2C is the clear 
choice 

● The board will switch to the selected mode upon power up or reset.  

4. Connect power 
● Any DC power source from 7 to 36V (e.g. Lithium, Lead Acid, a DC wall adapter, etc) 
● Be sure the power source can supply enough current for your application. 
● The board is ready to go when the amber LED turns off. 

NOTE: The configuration console explained below (section 8) is required for setting the I2C address and all settings relating to PWM control. 
 

Overview 
The NearZero (NZ) controller allows fine (arbitrarily slow in either direction) or positioning control of brushless motors for direct drive applications. Intended usage includes controlling hub motors for domestic 
robots, self-balancing devices, actuators for manipulators and robotic arms, and motorized or stabilized gimbals and mounts. Any brushless motor requiring between 7 and 36V will work with this controller, though 
the quality of slow motion control depends on the motor used (see section 1). The maximum continuous current is 1A per channel with active cooling, though excursions peaking at 3A are permissible. When 
controlled by PWM the running and resting currents are set in the configuration console according to section 8. Alternatively, control by I2C permits continuous real time current control. The 25kHz switching 
frequency puts the running tone well out of the human hearing range, resulting in totally silent “squeal-free” operation.  
 
Whereas typical brushless motor controllers require hall sensor or back-EMF (sensorless) feedback from the motor in order to trigger the commutation sequence, the NearZero’s fine-positioning is accomplished 
via a sine commutation sequence that is not informed by a hall sensor. A caveat is that while conventional controllers can run a motor at almost arbitrarily high speed, if a certain speed is surpassed with the 
NearZero controller (which depends on the load, current setting, supply voltage, and on the motor itself) the motor will stall. A stall condition is not harmful to the motor or controller, but it is the engineer’s 
responsibility to avoid this condition with appropriate power configuration and speed envelopes as demanded by the application, or by implementing active feedback using encoder data. The encoder and hall 
input connectors can be used with a motor having either a built in quadrature encoder or with an external encoder suitably mounted to the motor. These inputs can be used to report encoder or hall ticks over I2C 
for external closed-loop control, or for internal closed-loop control in the “servo” positioning mode. 

1                         This manual is written for v2.0 of the firmware. For the latest version of this manual and firmware visit www.skysedge.us/robotics/nearzero                        



Detail 
1. Motor Selection and Connections 

The phases for each motor output terminal block are marked on the silkscreen as U1, V1, W1 
for channel 1 and U2, V2, W2 for channel 2. Wire order for 3-phase (brushless) motors doesn’t 
matter but if the motor spins opposite the desired direction for a given command input, any two 
of the three leads can be reversed. Alternatively, the configuration console (see section 8) gives 
one the option to set the direction for each channel without having to reset wires.  
 
The quality of slow motion control depends heavily on the motor used. Many motors will exhibit 
cogging (torque ripple), whereby they visibly detent into the pole positions at low speed. The 
smoothest motion is obtained with motors intended for such operation, like hub motors and 
gimbal motors. In general such motors have a high pole count and relatively high winding 
resistance. An experimental feature included in the configuration console (see section 8) allows 
the selection of asymmetrical non-sine commutation waveforms that may reduce cogging on 
motors not normally intended for smooth positioning operation, but this feature will require 
extensive trial and error on the part of the user. 
 
Hot plugging motors is not supported mainly due to an initialization routine that the board 
performs at start time, described in section 4. Channels are automatically disabled that don’t 
have a motor connected during power up. Conversely, swapping one motor with another 
without restarting the board may result in an undetected, potentially dangerous over-current 
condition. 
 

2. Controlling the Board 
Two input types are available: I2C for control from single-board computers (detailed in section 6) 
and PWM for control from the R/C ecosystem (detailed in section 5). In either case motors can 
be commanded by velocity, position, or servo (closed-loop-position): 
 
Velocity -- Command inputs vary motor velocity. 
Position -- Command inputs vary motor position. 
Servo -- Like position mode except that an encoder (if installed) is used for on-board 
closed-loop position feedback, analogous to a servo motor. 
 
I2C input is the recommended control method for robotics applications not only because it 
allows more precise control than PWM inputs, but also because it allows real-time control of the 
current (power) setting and instantaneous switching between velocity/position/servo modes. 
What’s more, I2C cabling is well suited to chassis wiring situations (as opposed to the would-be 
awkwardness of running a USB cable to each controller board) and is intended for extensibility 
(one can run dozens or even hundreds of NearZero boards with addresses on one or more I2C 
busses).  Encoder ticks, when an encoder is installed, are also reported via the I2C bus, thus 
the roboticist is empowered to implement effort control and odometry. Extremely accessible 
Python example files are provided for out-of-the-box functionality with a Raspberry Pi or Nvidia 
Jetson Nano, and the I2C address is set via the configuration console (see section 8).  
 
PWM input allows the NearZero to be used with a PWM-based control source, like an RC 
receiver, drone/autopilot hardware, servo-tester, arduino, robotics control board, or any device 
capable of generating a PWM signal. The PWM inputs are standard servo-style 3-pin .1” 
headers. For a motor to operate in a positioning fashion in place of a conventional servo motor, 
control must be switched from velocity command to either position or servo command  

 
In the configuration console. Also be mindful that the motor current/power must be configured 
to be high enough that the motor won’t stall or skip under load, as PWM input does not give 
real-time control over current. When using PWM input the command type, resting current, and 
running current is configured for each channel separately using the configuration console, 
detailed in section 8. 
 
NOTE: The +5V pins on NearZero’s PWM headers are energized, meaning the board will 
power attached 5V PWM devices eliminating the need for a separate 5V power source like a 
BEC when using control sources like an RC receiver or servo tester. If an attached PWM 
device is powered separately in addition to being attached to the NearZero, the 5V rails of both 
devices will be tied. If this is undesirable the +5V (center) wire on the PWM cable can be 
omitted (or cut) without sacrificing functionality. 
 

3. Setting Control Input Type 
Although general configuration is done within the configuration console described in section 8, 
changing the command input source is sufficiently fundamental to have warranted a hardware 
jumper, called the input select jumper. It is here that one switches between I2C input, PWM 
input, or the USB port for use with the configuration console.  
 
The “RESET” position on the input select jumper initiates a software reset when touched 
momentarily with the jumper if the NearZero is in either I2C or PWM mode. The jumper should 
not be left in this position. With the NearZero in any mode (including the configuration console), 
the board can also be reset by plugging (or replugging) it into a computer via the USB cable 
and initiating a serial connection (described in section 8).  
 

4. Supplying Power 
The NearZero will run with any power source supplying between 7 and 36V and can be set to 
power motors from 0A to 1A continuous current with 1mA resolution, and up to 3A peak for 
short durations when commanded from I2C. The board will power on as soon as voltage is 
supplied to the input power terminal block in Figure 1, and will enter whichever input mode is 
set by the input select jumper. Connecting a USB cable will energize the board for the purpose 
of using the configuration console, but in general a motor cannot be powered by USB power 
alone.  
 
To reduce manufacturing cost the NearZero employs a single-channel current sensing circuit. 
Consequently, instead of monitoring (and regulating) the current draw of each channel 
continuously during operation, each channel’s power is ramped up to .5A one at a time after 
the board is energized. This initialization routine lasts about 10 seconds and is necessary for 
the NearZero to determine the correct duty cycle needed for each channel to draw the 
configured degree of current; a relationship which is unique to the specific motors used. If a 
motor is not connected at start-time, the corresponding channel will be left off. Also, as the 
NearZero has no means to maintain a fixed output power to compensate for supply voltage 
variation, voltage should not be allowed to vary more than would be expected of a discharging 
battery. This initialization routine starts automatically as soon as the board is energized and is 
indicated by the amber “13” LED. The board is ready to go when that LED turns off. 
 
Active cooling (e.g. an external fan) or more rigorous heat sinking should be considered when 
the board’s total continuous current draw approaches 1A and is considered necessary if each 
channel will be drawing 1A (2A total). 

 

2                         This manual is written for v2.0 of the firmware. For the latest version of this manual and firmware visit www.skysedge.us/robotics/nearzero                        



 
5. Control by PWM 

 
In PWM mode the NearZero can be paired with an R/C receiver or similar device as shown in Figure 2. Standard 3-wire “servo cables” connect to the PWM headers, where the GND, +5, and Sense positions are 
clearly marked on the NearZero’s silk screen. In this mode, out-of-the box functionality defaults to velocity-command at 300mA with 200mA resting current with sensor type set to encoder for both channels. This 
is meant to be a relatively conservative default state for initial “sanity check” testing. All PWM-specific settings are made through the configuration console, described in section 9. If PWM control results in a 
vibrating motor or a motor that can’t be stopped from turning, the PWM center OFFSET parameter may need to be changed.  
 

 

 
Figure 2 

  

3                         This manual is written for v2.0 of the firmware. For the latest version of this manual and firmware visit www.skysedge.us/robotics/nearzero                        



6. Control by I2C  

Making the connections: 
 
Control by I2C is easy using a single-board computer. The Python examples at http://skysedge.us/robotics/nearzero/python provide a starting point for controlling the NearZero on a Raspberry Pi or NVIDIA 
Jetson, and implementation on any other computer sporting I2C pins should be straightforward. The connections can be made with one’s own cabling or the supplied cable parts according to Figure 3 (note 
that the Raspberry Pi and NVIDIA Jetson Nano both use the same pin mapping on the GPIO header). The nice thing about I2C is that up to 119 devices can be connected to a single SCL/SDA pin pair, so 
connecting more than one NearZero is as easy as making the connections in parallel. An example of this is shown in supplementary Figure S1, where three NearZero I2C cables connect to a perfboard 
where they’re bussed to a single I2C header on an NVIDIA Jetson Nano. 
 
 

 
Figure 3 

 
 
The supplied connectors are IDC (insulation displacement) connectors as shown in Figure 4. In lieu of an expensive specialty crimping tool these can be terminated using a flat-head screwdriver to press the 
(unstripped) wire in place and a needle-nose pliers to bend the holding tabs over, after cutting the ribbon cable to the desired length. Figure 5 depicts this cable being used to connect a NearZero to a 
Raspberry Pi. 

 

 
Figure 4 

 
Figure 5 

 

4                         This manual is written for v2.0 of the firmware. For the latest version of this manual and firmware visit www.skysedge.us/robotics/nearzero                        



Install the Python examples: 
 
Several example Python files are available at https://github.com/jhaupt/nz1_python. It is assumed that you have a working single-board computer with Python installed: 
 
1. Copy the files onto the single-board computer: From the directory of your choice run ūŷǝɻŃƍơƘŐɻŲǝǝǄǑɏɛɛūŷǝŲǥŁɍŃơƖɛƇŲĦǥǄǝɛƘȍȘɫǄȃǝŲơƘɍūŷǝɼ
2. Install the libi2c Python library by amaork: Run ūŷǝɻŃƍơƘŐɻŲǝǝǄǑɏɛɛūŷǝŲǥŁɍŃơƖɛĦƖĦơǇƊɛƍŷŁŷșŃɍūŷǝɾɻɾand from within the libi2c directory do ǑǥŊơɻǄȃǝŲơƘɻǑŐǝǥǄɍǄȃɻŷƘǑǝĦƍƍɼ
3. Enable the I2C interface:  

a. On a Raspberry Pi run ǑǥŊơɻǇĦǑǄŷɤŃơƘŪŷūɾ and navigate to Interfacing Options > I2C > Yes 
b. On an NVIDIA Jetson Nano run ǑǥŊơɻǄŷǄɻŷƘǑǝĦƍƍɻ{ŐǝǑơƘɍ`Ùl¶ɼ

4. Once the NearZero(s) are connected it’s a good idea to run ŷșŃŊŐǝŐŃǝɻɤǇɻɤȃɻȘɾ to display all connected I2C devices. The NearZero(s) should be present in the “grid” display at the assigned address(es) 
 
 

Using the Python examples: 
 

There are four python scripts to play with, steal code from, use as boilerplate, or whatever: 
 
supersimple_example.py -- The absolute minimum code needed to make the NearZero do something. 
simple_example.py -- A more advanced but still simple example that defines a class and method to control the NearZero. 
odometry.py -- Prints encoder ticks. It can be run at the same time as any of the other examples because unlike USB, many programs can access the same I2C bus simultaneously. 
teleop_keyboard.py -- A simple implementation of real time keyboard control.  

 
These files are succinct and are commented so as to be self-explanatory. Still, some notes are warranted.  
 
In both supersimple_example.py and odometry.py the following code block should be included for each connected NearZero. An intuitive name is defined (in this case the NearZero is used to control two 
differential drive hub motors, so we call it “wheels”) and the I2C address is set (in this case 0x40). Nothing aside from the name and address needs to be changed when adding another device. 
 

øÈÈÈÈÈÈ#/..%#4 4/ .: !4 ')6%. !$$2%33 Ý]Ç_Ç ùpýùÞ !.$ ')6% )4 ! .!-% Ý]Ç_Ç ío`]]dkíÞÈÈÈÈÈÈ 

o`]]dk đ hqdaZaû[Ç)û#$]na[]Ýì×\]n×aû[ÈúìÄ ùpýùÞ 
o`]]dkÇ\]dYq đ úù 
o`]]dkÇhY_]ëZql]k đ úÿ 
o`]]dkÇ^dY_k đ hqdaZaû[Ç)û#ë-ë)'./2%ë.!+ 

 
 
In supersimple_example.py, writing commands to a NearZero called “wheels” is as easy as: 
 

o`]]dkÇojal]ÝùpùÄ ìúnčùùúùù[ùùûùùìÞ    ø$jan] [`Yff]d ú Yl n]dg[alqđúùù oal` ûùùe! g^ [mjj]fl 
o`]]dkÇojal]ÝùpùÄ ìûnčùùûþù[ùùüûùìÞ    ø$jan] [`Yff]d û Yl n]dg[alqđûþù oal` üûùe! g^ [mjj]fl 

 
 
Where the command syntax is as follows: 

                                                   
In simple_example.py, things are even more straightforward with the implementation of a class called “nz”. In the “Instantiate the joints” section, simply define each motor by giving it a name and specifying the 
channel and address of the NearZero it’s connected to like so: 

5                         This manual is written for v2.0 of the firmware. For the latest version of this manual and firmware visit www.skysedge.us/robotics/nearzero                        

https://github.com/jhaupt/nz1_python



